coalispr.resources.numeric¶
Classes¶
Immutable sequence used for indexing and alignment. |
|
Immutable sequence used for indexing and alignment. |
|
Immutable sequence used for indexing and alignment. |
|
Immutable sequence used for indexing and alignment. |
|
Immutable sequence used for indexing and alignment. |
Module Contents¶
- class coalispr.resources.numeric.NumericIndex¶
Bases:
pandas.core.indexes.base.Index
Immutable sequence used for indexing and alignment.
The basic object storing axis labels for all pandas objects.
Changed in version 2.0.0: Index can hold all numpy numeric dtypes (except float16). Previously only int64/uint64/float64 dtypes were accepted.
- Parameters:
data (array-like (1-dimensional))
dtype (str, numpy.dtype, or ExtensionDtype, optional) – Data type for the output Index. If not specified, this will be inferred from data. See the user guide for more usages.
copy (bool, default False) – Copy input data.
name (object) – Name to be stored in the index.
tupleize_cols (bool (default: True)) – When True, attempt to create a MultiIndex if possible.
See also
RangeIndex
Index implementing a monotonic integer range.
CategoricalIndex
Index of
Categorical
s.MultiIndex
A multi-level, or hierarchical Index.
IntervalIndex
An Index of
Interval
s.DatetimeIndex
Index of datetime64 data.
TimedeltaIndex
Index of timedelta64 data.
PeriodIndex
Index of Period data.
Notes
An Index instance can only contain hashable objects. An Index instance can not hold numpy float16 dtype.
Examples
>>> pd.Index([1, 2, 3]) Index([1, 2, 3], dtype='int64')
>>> pd.Index(list('abc')) Index(['a', 'b', 'c'], dtype='object')
>>> pd.Index([1, 2, 3], dtype="uint8") Index([1, 2, 3], dtype='uint8')
- class coalispr.resources.numeric.IntegerIndex¶
Bases:
NumericIndex
Immutable sequence used for indexing and alignment.
The basic object storing axis labels for all pandas objects.
Changed in version 2.0.0: Index can hold all numpy numeric dtypes (except float16). Previously only int64/uint64/float64 dtypes were accepted.
- Parameters:
data (array-like (1-dimensional))
dtype (str, numpy.dtype, or ExtensionDtype, optional) – Data type for the output Index. If not specified, this will be inferred from data. See the user guide for more usages.
copy (bool, default False) – Copy input data.
name (object) – Name to be stored in the index.
tupleize_cols (bool (default: True)) – When True, attempt to create a MultiIndex if possible.
See also
RangeIndex
Index implementing a monotonic integer range.
CategoricalIndex
Index of
Categorical
s.MultiIndex
A multi-level, or hierarchical Index.
IntervalIndex
An Index of
Interval
s.DatetimeIndex
Index of datetime64 data.
TimedeltaIndex
Index of timedelta64 data.
PeriodIndex
Index of Period data.
Notes
An Index instance can only contain hashable objects. An Index instance can not hold numpy float16 dtype.
Examples
>>> pd.Index([1, 2, 3]) Index([1, 2, 3], dtype='int64')
>>> pd.Index(list('abc')) Index(['a', 'b', 'c'], dtype='object')
>>> pd.Index([1, 2, 3], dtype="uint8") Index([1, 2, 3], dtype='uint8')
- class coalispr.resources.numeric.Int64Index¶
Bases:
IntegerIndex
Immutable sequence used for indexing and alignment.
The basic object storing axis labels for all pandas objects.
Changed in version 2.0.0: Index can hold all numpy numeric dtypes (except float16). Previously only int64/uint64/float64 dtypes were accepted.
- Parameters:
data (array-like (1-dimensional))
dtype (str, numpy.dtype, or ExtensionDtype, optional) – Data type for the output Index. If not specified, this will be inferred from data. See the user guide for more usages.
copy (bool, default False) – Copy input data.
name (object) – Name to be stored in the index.
tupleize_cols (bool (default: True)) – When True, attempt to create a MultiIndex if possible.
See also
RangeIndex
Index implementing a monotonic integer range.
CategoricalIndex
Index of
Categorical
s.MultiIndex
A multi-level, or hierarchical Index.
IntervalIndex
An Index of
Interval
s.DatetimeIndex
Index of datetime64 data.
TimedeltaIndex
Index of timedelta64 data.
PeriodIndex
Index of Period data.
Notes
An Index instance can only contain hashable objects. An Index instance can not hold numpy float16 dtype.
Examples
>>> pd.Index([1, 2, 3]) Index([1, 2, 3], dtype='int64')
>>> pd.Index(list('abc')) Index(['a', 'b', 'c'], dtype='object')
>>> pd.Index([1, 2, 3], dtype="uint8") Index([1, 2, 3], dtype='uint8')
- class coalispr.resources.numeric.UInt64Index¶
Bases:
IntegerIndex
Immutable sequence used for indexing and alignment.
The basic object storing axis labels for all pandas objects.
Changed in version 2.0.0: Index can hold all numpy numeric dtypes (except float16). Previously only int64/uint64/float64 dtypes were accepted.
- Parameters:
data (array-like (1-dimensional))
dtype (str, numpy.dtype, or ExtensionDtype, optional) – Data type for the output Index. If not specified, this will be inferred from data. See the user guide for more usages.
copy (bool, default False) – Copy input data.
name (object) – Name to be stored in the index.
tupleize_cols (bool (default: True)) – When True, attempt to create a MultiIndex if possible.
See also
RangeIndex
Index implementing a monotonic integer range.
CategoricalIndex
Index of
Categorical
s.MultiIndex
A multi-level, or hierarchical Index.
IntervalIndex
An Index of
Interval
s.DatetimeIndex
Index of datetime64 data.
TimedeltaIndex
Index of timedelta64 data.
PeriodIndex
Index of Period data.
Notes
An Index instance can only contain hashable objects. An Index instance can not hold numpy float16 dtype.
Examples
>>> pd.Index([1, 2, 3]) Index([1, 2, 3], dtype='int64')
>>> pd.Index(list('abc')) Index(['a', 'b', 'c'], dtype='object')
>>> pd.Index([1, 2, 3], dtype="uint8") Index([1, 2, 3], dtype='uint8')
- class coalispr.resources.numeric.Float64Index¶
Bases:
NumericIndex
Immutable sequence used for indexing and alignment.
The basic object storing axis labels for all pandas objects.
Changed in version 2.0.0: Index can hold all numpy numeric dtypes (except float16). Previously only int64/uint64/float64 dtypes were accepted.
- Parameters:
data (array-like (1-dimensional))
dtype (str, numpy.dtype, or ExtensionDtype, optional) – Data type for the output Index. If not specified, this will be inferred from data. See the user guide for more usages.
copy (bool, default False) – Copy input data.
name (object) – Name to be stored in the index.
tupleize_cols (bool (default: True)) – When True, attempt to create a MultiIndex if possible.
See also
RangeIndex
Index implementing a monotonic integer range.
CategoricalIndex
Index of
Categorical
s.MultiIndex
A multi-level, or hierarchical Index.
IntervalIndex
An Index of
Interval
s.DatetimeIndex
Index of datetime64 data.
TimedeltaIndex
Index of timedelta64 data.
PeriodIndex
Index of Period data.
Notes
An Index instance can only contain hashable objects. An Index instance can not hold numpy float16 dtype.
Examples
>>> pd.Index([1, 2, 3]) Index([1, 2, 3], dtype='int64')
>>> pd.Index(list('abc')) Index(['a', 'b', 'c'], dtype='object')
>>> pd.Index([1, 2, 3], dtype="uint8") Index([1, 2, 3], dtype='uint8')