coalispr.resources.numeric¶
Classes¶
Immutable sequence used for indexing and alignment. |
|
Immutable sequence used for indexing and alignment. |
|
Immutable sequence used for indexing and alignment. |
|
Immutable sequence used for indexing and alignment. |
|
Immutable sequence used for indexing and alignment. |
Module Contents¶
- class coalispr.resources.numeric.NumericIndex¶
Bases:
pandas.core.indexes.base.IndexImmutable sequence used for indexing and alignment.
The basic object storing axis labels for all pandas objects.
Changed in version 2.0.0: Index can hold all numpy numeric dtypes (except float16). Previously only int64/uint64/float64 dtypes were accepted.
- Parameters:
data (array-like (1-dimensional))
dtype (str, numpy.dtype, or ExtensionDtype, optional) – Data type for the output Index. If not specified, this will be inferred from data. See the user guide for more usages.
copy (bool, default False) – Copy input data.
name (object) – Name to be stored in the index.
tupleize_cols (bool (default: True)) – When True, attempt to create a MultiIndex if possible.
See also
RangeIndexIndex implementing a monotonic integer range.
CategoricalIndexIndex of
Categoricals.MultiIndexA multi-level, or hierarchical Index.
IntervalIndexAn Index of
Intervals.DatetimeIndexIndex of datetime64 data.
TimedeltaIndexIndex of timedelta64 data.
PeriodIndexIndex of Period data.
Notes
An Index instance can only contain hashable objects. An Index instance can not hold numpy float16 dtype.
Examples
>>> pd.Index([1, 2, 3]) Index([1, 2, 3], dtype='int64')
>>> pd.Index(list('abc')) Index(['a', 'b', 'c'], dtype='object')
>>> pd.Index([1, 2, 3], dtype="uint8") Index([1, 2, 3], dtype='uint8')
- class coalispr.resources.numeric.IntegerIndex¶
Bases:
NumericIndexImmutable sequence used for indexing and alignment.
The basic object storing axis labels for all pandas objects.
Changed in version 2.0.0: Index can hold all numpy numeric dtypes (except float16). Previously only int64/uint64/float64 dtypes were accepted.
- Parameters:
data (array-like (1-dimensional))
dtype (str, numpy.dtype, or ExtensionDtype, optional) – Data type for the output Index. If not specified, this will be inferred from data. See the user guide for more usages.
copy (bool, default False) – Copy input data.
name (object) – Name to be stored in the index.
tupleize_cols (bool (default: True)) – When True, attempt to create a MultiIndex if possible.
See also
RangeIndexIndex implementing a monotonic integer range.
CategoricalIndexIndex of
Categoricals.MultiIndexA multi-level, or hierarchical Index.
IntervalIndexAn Index of
Intervals.DatetimeIndexIndex of datetime64 data.
TimedeltaIndexIndex of timedelta64 data.
PeriodIndexIndex of Period data.
Notes
An Index instance can only contain hashable objects. An Index instance can not hold numpy float16 dtype.
Examples
>>> pd.Index([1, 2, 3]) Index([1, 2, 3], dtype='int64')
>>> pd.Index(list('abc')) Index(['a', 'b', 'c'], dtype='object')
>>> pd.Index([1, 2, 3], dtype="uint8") Index([1, 2, 3], dtype='uint8')
- class coalispr.resources.numeric.Int64Index¶
Bases:
IntegerIndexImmutable sequence used for indexing and alignment.
The basic object storing axis labels for all pandas objects.
Changed in version 2.0.0: Index can hold all numpy numeric dtypes (except float16). Previously only int64/uint64/float64 dtypes were accepted.
- Parameters:
data (array-like (1-dimensional))
dtype (str, numpy.dtype, or ExtensionDtype, optional) – Data type for the output Index. If not specified, this will be inferred from data. See the user guide for more usages.
copy (bool, default False) – Copy input data.
name (object) – Name to be stored in the index.
tupleize_cols (bool (default: True)) – When True, attempt to create a MultiIndex if possible.
See also
RangeIndexIndex implementing a monotonic integer range.
CategoricalIndexIndex of
Categoricals.MultiIndexA multi-level, or hierarchical Index.
IntervalIndexAn Index of
Intervals.DatetimeIndexIndex of datetime64 data.
TimedeltaIndexIndex of timedelta64 data.
PeriodIndexIndex of Period data.
Notes
An Index instance can only contain hashable objects. An Index instance can not hold numpy float16 dtype.
Examples
>>> pd.Index([1, 2, 3]) Index([1, 2, 3], dtype='int64')
>>> pd.Index(list('abc')) Index(['a', 'b', 'c'], dtype='object')
>>> pd.Index([1, 2, 3], dtype="uint8") Index([1, 2, 3], dtype='uint8')
- class coalispr.resources.numeric.UInt64Index¶
Bases:
IntegerIndexImmutable sequence used for indexing and alignment.
The basic object storing axis labels for all pandas objects.
Changed in version 2.0.0: Index can hold all numpy numeric dtypes (except float16). Previously only int64/uint64/float64 dtypes were accepted.
- Parameters:
data (array-like (1-dimensional))
dtype (str, numpy.dtype, or ExtensionDtype, optional) – Data type for the output Index. If not specified, this will be inferred from data. See the user guide for more usages.
copy (bool, default False) – Copy input data.
name (object) – Name to be stored in the index.
tupleize_cols (bool (default: True)) – When True, attempt to create a MultiIndex if possible.
See also
RangeIndexIndex implementing a monotonic integer range.
CategoricalIndexIndex of
Categoricals.MultiIndexA multi-level, or hierarchical Index.
IntervalIndexAn Index of
Intervals.DatetimeIndexIndex of datetime64 data.
TimedeltaIndexIndex of timedelta64 data.
PeriodIndexIndex of Period data.
Notes
An Index instance can only contain hashable objects. An Index instance can not hold numpy float16 dtype.
Examples
>>> pd.Index([1, 2, 3]) Index([1, 2, 3], dtype='int64')
>>> pd.Index(list('abc')) Index(['a', 'b', 'c'], dtype='object')
>>> pd.Index([1, 2, 3], dtype="uint8") Index([1, 2, 3], dtype='uint8')
- class coalispr.resources.numeric.Float64Index¶
Bases:
NumericIndexImmutable sequence used for indexing and alignment.
The basic object storing axis labels for all pandas objects.
Changed in version 2.0.0: Index can hold all numpy numeric dtypes (except float16). Previously only int64/uint64/float64 dtypes were accepted.
- Parameters:
data (array-like (1-dimensional))
dtype (str, numpy.dtype, or ExtensionDtype, optional) – Data type for the output Index. If not specified, this will be inferred from data. See the user guide for more usages.
copy (bool, default False) – Copy input data.
name (object) – Name to be stored in the index.
tupleize_cols (bool (default: True)) – When True, attempt to create a MultiIndex if possible.
See also
RangeIndexIndex implementing a monotonic integer range.
CategoricalIndexIndex of
Categoricals.MultiIndexA multi-level, or hierarchical Index.
IntervalIndexAn Index of
Intervals.DatetimeIndexIndex of datetime64 data.
TimedeltaIndexIndex of timedelta64 data.
PeriodIndexIndex of Period data.
Notes
An Index instance can only contain hashable objects. An Index instance can not hold numpy float16 dtype.
Examples
>>> pd.Index([1, 2, 3]) Index([1, 2, 3], dtype='int64')
>>> pd.Index(list('abc')) Index(['a', 'b', 'c'], dtype='object')
>>> pd.Index([1, 2, 3], dtype="uint8") Index([1, 2, 3], dtype='uint8')